On an Hermite-Birkhoff Problem of Passow

Avraham A. Melkman
Department of Mathematics, Ben Gurion University, Beer Sheva, Israel

Communicated by G. G. Lorentz

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SEVENTIETH BIRTHDAY

In a recent paper [6] Passow considers incidence matrices $E=\left(e_{i j}\right)_{i=1, j=0}^{N}$, which in their first column contain exactly two ones. He then relates the poisedness of E on a particular set of points $X=\left\{x_{1}, \ldots, x_{v}\right\}$ to the existence of certain quadrature formulas and in particular notes that if there exists a quadrature formula of precision $n-1$ based on X then the problem (E, X, \mathscr{F}_{n}) is not poised. In this work we confirm Passow's conjecture that the converse is also true, extending its scope.

We take the following viewpoint of this result. Recall that E is certainly not poised unless it satisfies the Polya conditions $M_{l}=\sum_{j-0}^{l} \sum_{i-1}^{N} e_{i j} \geqslant l+1$, $l=0 \ldots, n-1, M_{n}=n+1$; see $|7|$. If $M_{l}=l+1$ for some l then E is decomposable and poised if and only if each element of the decomposition is poised [1]. Thus E may be assumed to satisfy the Birkhoff condition $M_{l} \geqslant l+2$, $l=0, \ldots, n-1$. If now there is equality in the case $M_{k-1}=k+1$ then one may ask whether it is possible to determine the poisedness of E on the basis of the properties of its components

$$
\begin{array}{ll}
F=\left(f_{i j}\right)_{i-1, j, 0}^{k}, \quad f_{i j}=e_{i j}, \quad j<k: \quad f_{i k}=0, \\
L=\left(l_{i j}\right)_{i-1, j=0}^{N-1,}, & l_{i j}=e_{i, j+k} . \tag{1}
\end{array}
$$

For this purpose we need some results dating back to Birkhoff $[2]$; see also |4|. Denote

$$
D_{1}(X)=\operatorname{det}\left|\frac{x_{i}^{n-k}}{(n-k)!}, \ldots, \frac{x_{i}^{-k}}{(-k)!}\right| \text { over } f_{i k}=1, \text { where }(r!)^{-1}=0 \text { for } r<0,
$$

so that $\left(F, X, \mathscr{P}_{k}\right)$ is poised if and only if $D_{F}(X) \neq 0$. Let $D_{i j}(X)$ be the algebraic complements of the first column of $D_{F}(X)$. Thus $D_{i j}(X)=D_{F_{i j}}(X)$,
where $F_{i j}$ is obtained from F by changing entry $f_{i j}$ from 1 to 0 . Birkhoff's kernel is given by

$$
\begin{equation*}
K_{F}(X, t)=\operatorname{det}\left|\frac{\left(x_{i}-t\right)_{+}^{k-j-1}}{(k-j-1)!}, \frac{x_{i}^{k-j-1}}{(k-j-1)!}, \ldots, \frac{x_{i}^{-j}}{(-j)!}\right|, \quad f_{i j}=1 \tag{2}
\end{equation*}
$$

We have for any $g \in C^{k}\left|x_{1}, x_{N}\right|$

$$
\begin{equation*}
\sum_{f_{i j}=1} D_{i j}(X) g^{(j)}\left(x_{i}\right)=\int_{x_{1}}^{x_{n}} K_{r}(X, t) g^{(k)}(t) d t . \tag{3}
\end{equation*}
$$

Furthermore if F contains no odd supported blocks $[5]$ then it is well known [1] that $D_{F}(X) \neq 0$. As a result for such F
(a) $K_{F}(X, t) \geqslant 0$ everywhere,
(b) $D_{i k}(X) \neq 0, f_{i k}=1$, for $F_{i k}$ again has no odd supported blocks.

Theorem 1. Suppose F contains no odd supported blocks. Then $\left(E, X, \mathscr{P}_{n}\right)$ is not poised if and only if there exists $q \in \mathscr{P}_{n-k}$ annihilating (L, X) and such that

$$
\begin{equation*}
\int_{x_{1}}^{x_{N}} K_{r}(X, t) q(t) d t=0 \tag{4}
\end{equation*}
$$

Proof. Suppose $\left(E, X, \mathscr{P}_{n}\right)$ is not poised, let $p \in \mathscr{P}_{n}$ annihilate (E, X) and denote $q=p^{(k)}$. Then q annihilates (L, X) and by identity (3) $\int_{x_{1}}^{x_{V}} K_{F}(X, t) q(t) d t=0$.

For the converse, let $H(y, t)=K_{\tilde{F}}(\tilde{X}, t)$, where $\tilde{X}=X \cup\{y\}$ and \widetilde{F} is obtained from F by changing the non-zero entry $f_{r, 0}$ from 1 to 0 and adding a row corresponding to y, with a single non-zero entry in the 0 column. Now given q define

$$
p(y)=\int_{x_{1}}^{x_{v}} H(y, t) q(t) d t .
$$

A look at (2) shows $p^{(k)}(y)=D_{r, 0}(X) q(y), p^{(j)}\left(x_{i}\right)=0, f_{i j}=1,(i, j) \neq(r, 0)$ and thus identity (3) becomes

$$
D_{r .0} p\left(x_{r}\right)=\int_{x_{1}}^{x_{\lambda}} K_{F}(X, t) q(t) d t
$$

which vanishes by assumption. Hence p annihilates (E, X).

The condition of Theorem 1 is sometimes easy to test.
Example. In the spirit of Lorentz and Zeller [5] consider

$$
\begin{aligned}
& k \quad k-1 \\
& \left.E=\begin{array}{r|ccccccccc}
-1 & 1 & 1 & . & . & 1 & 0 & . & . & 0 \\
x_{2} & 0 & 1 & 0 & . & . & . & 0 & 1 & 0 \\
1 & 1 & 1 & . & . & 1 & 0 & . & . & 0
\end{array}\left|, \quad L=x_{2}\right| \begin{array}{llllllll}
-1 & 1 & 1 & . & . & 1 & 0 & . \\
1 & 0 & . & . & . & . & 0 & 1 \\
1 & 1 & 1 & . & . & 1 & 0 & .
\end{array} \right\rvert\, .
\end{aligned}
$$

Note that $\left(L, X, \mathscr{S}_{2 k+1}\right)$ is poised for all X and hence $p \in \mathscr{S}_{2 k+2}$ annihilating (L, X) is unique up to a multiplicative constant, $p(t)=\left(t^{2}-1\right)^{k}\left(t-x_{2}\right)$. $\left(t-(2 k+1) x_{2}\right)$. Now the equation

$$
I_{k+1}+\left(1+(2 k+1) x_{2}^{2}\right) I_{k}=\int_{-1}^{1} p(t) d t=0
$$

has no real solutions since

$$
I_{k+1}=\int_{-1}^{1}\left(t^{2}-1\right)^{k+1} d t=-\frac{2 k+3}{2 k+3} I_{k}
$$

Thus $\left(E, X, \mathscr{P}_{n}\right)$ is always poised.

Theorem 2. Suppose F contains no odd supported blocks and $\left(L, X, \mathscr{P}_{n-k-1}\right)$ is poised. Then $\left(E, X, \mathscr{P}_{n}\right)$ is not poised if and only if there exists a quadrature formula of the form

$$
\begin{equation*}
\int_{x_{1}}^{x_{x}} K_{F}(X, t) g(t) d t \approx \sum_{t_{i j}=1} a_{i j} g^{(j)}\left(x_{i}\right), \tag{5}
\end{equation*}
$$

which is exact for polynomials of degree $n-k$.

Proof. There always exists $q \in \mathscr{F}_{n-k}$ annihilating (L, X) since only $n-k$ conditions are specified. If (5) is exact for \mathscr{P}_{n-k} then clearly (4) holds and hence $\left(E, X, \mathscr{P}_{n}\right)$ is not poised. For the converse note that since ($L, X, \mathscr{P}_{n-k-1}$) is poised it is possible to interpolate with \mathscr{P}_{n-k-1} to the data $g^{(j)}\left(x_{i}\right), l_{i j}=1$. Hence (5) may be assumed to be interpolatory and exact at least for \mathscr{Z}_{n-k-1}.

Let $p \in \mathscr{F}_{n}$ annihilate (E, X). Then $q=p^{(k)}$ satisfies (4) and since q annihilates (L, X) but $\left(L, X, \mathscr{P}_{n-k 1}\right)$ is poised, the degree of q must be exactly $n-k$. Therefore any $Q \in \mathscr{P}_{n-k}$ may be written as $Q(t)=A q(t)+r(t)$, where $r \in \mathscr{P}_{n-k-1}$ and hence

$$
\begin{aligned}
\int_{x_{1}}^{x_{v}} & K_{F}(X, t) Q(t) d t \\
& =\int_{x_{1}}^{x_{y}} K_{F}(X, t) r(t) d t \\
& =\sum_{l_{i j}=1}^{v} a_{i j} r^{(j)}\left(x_{i}\right)=\sum_{l_{i j}=1} a_{i j}\left|A q^{(j)}\left(x_{i}\right)+r^{(j)}\left(x_{i}\right)\right| .
\end{aligned}
$$

Remark 1. If F contains no odd supported blocks then $K_{F}(X, t)$ is a nonnegative weight function. Thus results analogous to Passow's may be derived. Specifically, if all supported blocks in L are even, and

$$
\int_{x_{1}}^{x_{N}} K_{F}(X, t) g(t) d t \approx \sum_{i=1}^{M} b_{i} g\left(y_{i}\right)
$$

is a quadrature formula exact for $\mathscr{O}_{n-k}, b_{i}>0 i=1, \ldots, M$, and the number of Hermite conditions in $\left(y_{i}, y_{j}\right) j=2, \ldots, M$ is always even, then $\left(E, X, \mathscr{P}_{n}\right)$ is poised.

Remark 2. Many questions are left unanswered. For example, what happens if (F, X, \mathscr{P}_{k}) is not poised? It is easy to see that $\left(E, X, \mathscr{P}_{n}\right)$ may still be poised. Or: is it possible to come up with a nice condition if ($L, X, \mathscr{G}_{n-k-1}$) is not poised? It is clear that if the co-rank of L is 2 , see $|3|$. then $\left(E, X, \mathscr{V}_{n}\right)$ is not poised.

References

1. K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235.
2. G. D. Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and integration. Trans. Amer. Soc. 7 (1906). 107-136.
3. B. L. Chalmers. D. J. Johnson, F. T. Metcalf, and G. D. Taylor, Remarks on the rank of Hermite-Birkhoff interpolation, SIAM J. Numer. Anal. 11 (1974), 254-259.
4. G. G. Lorentz, Zeros of splines and Birkhoff's Kernel, Math. Z. 142 (1975), 173-180.
5. G. G. Lorentz and K. L. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal. 8 (1971), 43-48.
6. E. Passow. Conditionally poised Birkhoff interpolation problems, to appear.
7. I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.
